首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1797篇
  免费   255篇
  国内免费   484篇
测绘学   47篇
大气科学   148篇
地球物理   256篇
地质学   1479篇
海洋学   139篇
天文学   17篇
综合类   37篇
自然地理   413篇
  2024年   13篇
  2023年   25篇
  2022年   67篇
  2021年   72篇
  2020年   109篇
  2019年   104篇
  2018年   75篇
  2017年   103篇
  2016年   89篇
  2015年   114篇
  2014年   137篇
  2013年   148篇
  2012年   111篇
  2011年   111篇
  2010年   87篇
  2009年   112篇
  2008年   133篇
  2007年   131篇
  2006年   117篇
  2005年   118篇
  2004年   83篇
  2003年   78篇
  2002年   52篇
  2001年   32篇
  2000年   47篇
  1999年   43篇
  1998年   36篇
  1997年   27篇
  1996年   31篇
  1995年   18篇
  1994年   21篇
  1993年   20篇
  1992年   17篇
  1991年   8篇
  1990年   13篇
  1989年   7篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1954年   1篇
排序方式: 共有2536条查询结果,搜索用时 15 毫秒
31.
The Anzishan ophiolite, a typical ophiolitic block of early Carboniferous age in the Mian-Lue suture zone of the Qinling Mountains, central China, consists of amphibolites/metabasalts, gabbros and gabbroic cumulates. All of these rocks, as well as those in the Hunshuiguan-Zhuangke (HZ) block, have compositions similar to normal MORB and back-arc basin basalts (BABB) with high εNd(t) values, indicating that they were derived from a depleted mantle source. The Mian-Lue suture zone also contains blocks of other lithologies, e.g., rift volcanic rocks in the Heigouxia block and arc volcanic rocks in the Sanchazi block. Although they are in fault contact with each other, the presence of these different blocks in the Mian-Lue suture zone may represent a complete Wilson cycle, from initial rifting to open ocean basin to final subduction and continent-continent collision, during the late Paleozoic-early Triassic. In this region, the North and South China Cratons were separated by Paleo-Tethys at least until the early Carboniferous, and final amalgamation of both cratons along the Qinling orogenic belt took place in the Triassic.  相似文献   
32.
During the development of the Variscan orogeny, large amounts of granitic melt were produced, giving rise to the intrusion of granitoids at different structural levels. Despite numerous studies, ages available from previous work on the Cévennes granites remain largely imprecise. In order to better constrain the age and emplacement mode of these granites, we have combined U–Pb dating on monazites and zircons and 40Ar/39Ar dating on biotites with petrological observations, major element chemical analysis and SEM zircon imaging on five samples from the Aigoual–St Guiral–Liron and Mont Lozère granitic massifs. The results revealed that granitic intrusions and cooling in Southern Cévennes occurred in a short time span at ∼306 Ma after the main episode of regional metamorphism. Petrological and chemical data suggest that they result from a mixing between mantle-derived basic magmas (lamprophyres) and lower crust acid magmas. At a regional scale the production of these melts occurred at the end of crustal thickening induced by nappe stacking, at the same time as the late anatectic events recorded further north in the Velay dome and the granulite facies metamorphism recorded in metasedimentary granulite enclaves brought up by Tertiary volcanoes of the Velay area (Bournac).  相似文献   
33.
The large-scale crustal deformations observed in the Central European Basin System (CEBS) are the result of the interplay between several controlling factors, among which lateral rheological heterogeneities play a key role. We present a finite-element integral thin sheet model of stress and strain distribution within the CEBS. Unlike many previous models, this study is based on thermo-mechanical data to quantify the impact of lateral contrasts on the tectonic deformation. Elasto-plastic material behaviour is used for both the mantle and the crust, and the effects of the sedimentary fill are also investigated. The consistency of model results is ensured through comparisons with observed data. The results resemble the present-day dynamics and kinematics when: (1) a weak granite-like lower crust below the Elbe Fault System is modelled in contrast to a stronger lower crust in the area extending north of the Elbe Line throughout the Baltic region; and (2) a transition domain in the upper mantle is considered between the shallow mantle of the Variscan domain and the deep mantle beneath the East European Craton (EEC), extending from the Elbe Line in the south till the Tornquist Zone. The strain localizations observed along these structural contrasts strongly enhance the dominant role played by large structural domains in stiffening the propagation of tectonic deformation and in controlling the basin formation and the evolution in the CEBS.  相似文献   
34.
35.
Evidence on the Paleozoic granitoids of the eastern part of the Central Asian Fold Belt (CAFB) was analyzed. A tectonic chart of orogenic belts was compiled. Sketch maps were constructed for the geodynamic settings of the formation of Paleozoic granitoids and the extensiveness of their occurrence. Two types of deep controlling structures were distinguished: zones of lithospheric faults and plumes, including the newly recognized Jiamusi-Bureya plume. It was sown that the distribution of large and superlarge Paleozoic ore deposits is related to these structures, primarily to plumes. Sites promising for large and superlarge deposits related to the Paleozoic granitoid magmatism were determined in the Russian Far East.  相似文献   
36.
The deep seismic reflection traverses across the Central Alps (NFP 20, ECORS-CROP) contain a new set of data on the lower crust which has been interpreted in different ways. One currently fashionable model depicts the European lower crust (ELC) as gently dipping below the Adriatic crust. However, this model requires that an observed sharp termination of the ELC under the internal border of the External Massifs is due to the non-transmission of organized seismic energy through the complex upper crust. This explanation is questioned as other reflections in this and similarly complex areas are recorded, and as the same sharp termination of the ELC under the internal border of the External Massifs is observed on all seismic lines for a length of 300 km. A tectonic — metamorphic cause appears to more satisfactorily explain the obeservations, and therefore an alternative model combining surface and deep geophysical data is proposed. It consists of three mutually largely decoupled tectonic levels. (1) The shallow obducted part or lid, bounded at its base by the combined Late Miocene Jura and Lombardic basal thrusts. Estimates of shortening based on balanced sections are at least about 100 km. (2) The intermediate level between the brittle-ductile transition and the top of the subducted mantle. It contains a stack of lower crust imbrications (with a minor admixture of upper mantle) accommodated by (inducted into) the ductile middle crust. Estimates of shortening based on area balancing are again of the order of slightly more than 100 km. (3) The subducted upper mantle, for which there are no reflection data.In the Central Alps the Late Miocene phase was dextrally transpressive, producing flower structures at the shallow level (External Massifs); the stacks of lower crust imbrications at the intermediate level may be the equivalent of the External Massifs at that level. Inverted flower structures of the subducted mantle are possible, but no detailed data are available.  相似文献   
37.
During the Late Carboniferous to Early Permian, a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean (PAO) subduction in the Xi Ujimqin area. Nevertheless, the closure time of the PAO is still under debate. Thus, to identify the origin of the PAO, the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine, polymict clastic boulders and sandstones in the Shoushangou Formation within the basin. The analyses revealed magmatic activity and tectonic evolution. The conglomerates include megaclasts of granite (298.8 ± 9.1?Ma) and granodiorite porphyry (297.1 ± 3.1?Ma), which were deposited by muddy debris flow. Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite, characterized by low Zr + Nb + Ce + Y and low Ga/Al values. The granitoid boulders were formed in island arc setting, indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin. Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks. Detrital zircon U-Pb age cluster of 330–280?Ma was obtained, indicating input from granite, ophiolite, Xilin Gol complex, and Carboniferous sources to the south. The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc. The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO. The backarc basin and intrusive rocks, in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol, confirm the presence of an Early Permian trench-arc-basin system in the region, represented by the Baolidao arc and Xi Ujimqin backarc basin. This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.  相似文献   
38.
中亚造山带南缘如何向南扩展,对深入理解增生型造山作用和大陆地壳生长机制以及中亚构造域与特提斯构造域的衔接具有重要科学意义。作为中亚造山带南缘的关键构造单元,敦煌构造带大地构造属性长期备受关注且颇有争议。传统观点认为敦煌构造带是古亚洲洋南侧的前寒武纪稳定大陆地块,以刚性块体的形式参与了中亚造山带南缘的最终拼贴过程。然而,近年来研究认为敦煌构造带卷入了古亚洲洋南部的俯冲增生造山过程,属于中亚造山带南缘的增生系统。显然,这一争议限制了对中亚造山带南缘向南扩展方式及增生造山过程的理解。敦煌北部三危山地区出露一套古生代岩浆-变质杂岩,是解开这一争论的关键。本文综合前人研究基础及新的资料,归纳了这套岩浆-变质杂岩的野外岩石-构造组合、地球化学和年代学等方面特征:该岩浆-变质杂岩整体显示"二元结构"特征,即较老的增生杂岩为基底,弧岩浆岩侵入或不整合覆盖其上;其中岩浆岩属于中钾-高钾钙碱性系列中酸性岩浆岩,富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损高场强元素(HFSE),与典型的弧岩浆岩类似,并且微量元素组成特征反映中酸性岩浆的源区与俯冲沉积物部分熔融有关;岩浆作用大致归为510Ma、460~410Ma和370~360Ma三期。岩浆岩中结晶锆石不一致的εHft)值(既有正值,又有负值)以及继承锆石的存在表明,岩浆源区既有古老地壳物质的加入,也有新生地壳物质的形成。以上这些特征与发育在增生杂岩之上的增生弧十分类似,因此本文提出敦煌北部岩浆-变质杂岩的属性为古生代增生弧,并且该增生弧与其南部的红柳峡俯冲增生杂岩共同勾勒出敦煌构造带自北向南增生弧-增生杂岩的基本构造格架,即敦煌构造带的大地构造属性实为造山带而非稳定地块。结合区域地质背景及敦煌地区与北山地区古生代至早中生代构造-热事件的对应关系,认为敦煌造山带属于中亚造山带中段南缘的增生系统,中亚造山带中段以增生弧-增生杂岩的形式向南扩展至敦煌地区。  相似文献   
39.
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments.  相似文献   
40.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号